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ABSTRACT 

In this paper, a novel relative object tracking algorithm using a 

convolutional neural network is proposed aiming to boost the 

tracking performance. A two-layer convolutional neural network 

extracts sparse feature representation of visible and infrared 

sequences via convolutional filters. The convolutional filters 

contain two types, object filter, and relative filters. In the first 

frame, we employ a set of normalized fusion patches as the object 

filters. Moreover, a relative model is explored to generate relative 

filters using k-means algorithms, which integrates information 

from both foreground and background to build accurate 

appearance model. This algorithm without training is robust and 

efficient. Quantitative and qualitative evaluations demonstrate that 

the performance of this algorithm improves significantly over the 

state-of-the-art techniques when applied to public testing 

sequences. 

CCS Concepts:  
• Cmpouting methodologies →Tracking;• Computing 

methodologies → Neural networks 
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1. INTRODUCTION 
Object tracking plays a crucial and fundamental role in computer 

vision with potential influence for motion analysis, robotics, 

automatic surveillance, etc. Although researchers have proposed a 

considerable number of related approaches in recent years, there 

still exist many challenges, such as partial occlusions, motion 

blurs and cluttered backgrounds. 

Over the years, many trackers focus on diverse types of feature 

extractor to tackle these challenges (e.g., binary patterns, intensity 

histograms, Haar-like features, HOG descriptors, and principal 

component analysis). Whereas these hand-craft features describe 

the objects based on a certain template, which is not robust and 

accurate to obtain the appearance change over time. In addition, 

these features are incapable of capturing the semantic information 

of the target, which has an adverse impact on tracking 

performance.  

Recently, convolutional neural networks (CNN) have been 

successfully applied to object tracking field. These CNN based 

trackers train with large-scale image classification databases such 

as ImageNet [1] and improve the performance and robustness 

significantly against hand-crafted features. However, the CNN for 

online visual tracking is not straightforward. Although these 

semantic representations after training are shown to be sufficient 

to discriminate objects of various categories, its effectiveness is 

limited due to the fundamental inconsistency between 

classification method and tracking problems.  Moreover, it is truly 

challenging that training the CNN with a large number of 

parameters needs a lot of annotated training data and time. 

Besides, the method pays attention to a pre-trained feature 

extractor rather than the similar information among the target over 

consecutive frames.  Offline learning on auxiliary data fully 

exploits the appearance representation of CNN in object tracking 

tasks. However, it still lacks information diversity and flexibility 

to some extent and is not handy and effective enough to 

differentiate the target from the background for object tracking. 

In this paper, a lightweight convolutional neural network for 

generic object tracking is proposed to address the challenges, such 

as partial occlusions, motion blurs, and cluttered backgrounds. 

Unlike the previous work, we fuse the infrared and visible 

sequences and combine the traditional CNN as well as the relative 

filters to build a network without training to generate a global 

representation. This algorithm provides various benefits over 

traditional feature extractors and deep networks methods. This 

network enhances information diversity and preserves feature 

invariance using visible and infrared sequences. To the best of our 

knowledge, it is the first work to formulate multi-sensor tracking 

algorithm via a convolutional neural network. Though we do not 

exploit a complex multi-layer network structure, this method can 

still be powerful and efficient enough to learn robust tracking 

algorithm. Besides, relative proposals are reliable for object 

proposal generation and are presented to alleviate challenges 

caused by insufficient information extraction. The extensive 

experimental conclusions demonstrate that the proposed algorithm 

is validated on challenging video sequences and outperforms 

state-of-the-art tracking methods. 

2. PROPOSED ALGORITHM 

2.1 Preprocessing 
Before convolutional neural network, we perform preprocessing 

to normalize the image patches from infrared and visible 

sequences and improve the adaptability of different proposals as 

well as solve the scale variations. Preprocessing contains three 

steps: proposal generalization, warping and normalization, and 

fusion.  

There are two different methods to generate the proposals: direct 

model and relative model. Most of the existing target tracking 

algorithms are the direct model. This type of algorithms directly 

exploits the local image proposals of the target or the background 

to build the appearance as the binary classification. However, it 
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results in some deviation of appearance representation. The 

relative tracking algorithm effectively makes use of the relative 

relationship between different proposals, which integrate the 

relative weights of all the relevant objects. This type allows the 

appearance model to obtain more information that can estimate 

the target state even if partially occluded. Therefore, for target 

proposal task, the relative model is a robust algorithm. The 

candidate proposal set is generated  

 
Figure 1.  Framework of the proposed algorithm 

by the overlap rate with the tracking result at the previous frame. 

As shown in Figure 2, we divide the candidate proposal set into 6 

subsets:  , (     ), ,       -, ,       -, ,       )and ,     -   and 

extracts candidate proposals of size   for each subset. 

 
Figure 2.  Relative tracker 

The adaptability of different size of proposals requires image 

warping, mean subtraction, and l2 normalization. To fuse the 

visible and infrared images, we add the infrared image proposals 

as the fourth channel expect RGB color channels, and thus we get 

a set of four-channel proposals I of size    . Image patch set 

  *          (     ) + is generated by a sliding window of 

size     in the four-channel proposals. 

 

2.2 Convolutional Neural Network  

2.2.1 First Layer 
After preprocessing, we conduct the k-means algorithm to 

effectively capture the patch set    *  
    

      
 +    as target 

convolutional filters using the target position at the beginning 

frame. Its core idea is to gain the extract target feature   
  based on 

filter   
  and the target proposal   at first frame given by 

  
    

    

where   is the convolution operation and   
   (     ) (     ). 

Likewise, we denote relative patch set   
  *   

     
       

 +    

as the optimal relative filters from the  th relative proposal in 

the  th subset at the previous frame by the k-means algorithm, 

where        . The number of relative convolutional filters 

is    . For better integration of filters, six relative filter sets are 

defined as: 
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where   *               + . Besides, we modify the 

convolution method to exploit these relative filters  . That is,  

  
    

    
is the desired feature extractor for each frame in the relative object 

view. Eventually, each filter requires a relative weight as a 

parameter and features are computed based on both target filters 

and relative filters as follows: 
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where   provides weights to the different convolutional filters, 

and the length of   is 6.    represents feature generated by the  th 

filter. We combine    to build a matrix F of size (     )  
(     )   , which includes the appearance features about 

the target and relative objects. 

2.2.2  Second Layer 
Because of the redundancy and complexity of feature maps, we 

employ a robust representation scheme as 

                   
  

 

 
         

  

where    is the sparse feature map and   is the vectorization of the 

matrix F,     (     )  . 

Moreover, we utilize soft shrinkage to get approximate solution: 

       ( )    (     ( )   ) 
where     ( ) means the sign of vector    

2.2.3 Template Update 
For the update stage of each frame, given an estimated sparse 

feature     and appearance template  ̂ , the appearance template in 

next frame is obtained by: 

 ̂    (   ) ̂     
  

2.3 Tracking Algorithm  
Tracking objects of interest, as one of the crucial components, 

requires tools to tackle a variety of severe problems. Considering 

these concepts, Markov module with hidden state variables is one 

task that can benefit from the in general motion analysis. This 

model designs the affine motion caused by the two continuous 



frames and describes these related coefficients as      at time 

   . Provided a series of consecutive-frame observations     , 

we adopt the Bayes' theorem to build the posterior possibility as: 

 (          )   (          )∫ (        ) (      )     

,where   *             +, and    is called the state of 

proposal variable which is target object estimation in the visual 

tracking area. This equation describes that the observation 

likelihood of tracking process is governed by the previous 

tracking result as well as the dynamic model.  

We provide a variant of the Gaussian distribution to design the 

formulation using Brownian motion, where each independent 

    is relevant to its previous result   . Moreover,  (    
   ̂ )is 

based on Gaussian distribution and the mean is based on   . 

According to the target template  ̂    in the 𝑖th particle     
 : 
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and since  ̂   

𝑖
 is calculated by the multiplying the corresponding 

feature vector as well as the weight. 

 ̂   

𝑖
     

    

The element of weight is defined as 1 when the corresponding 

element of  ̂    is 0, otherwise, the element of the weight is 0. We 

can simplify the above formula with particles as: 

 ̂              
  ( 
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3. EXPERIMENTAL EVALUATION AND 

RESULTS 

3.1 Experimental Setup 

3.1.1 Datasets 
This algorithm is implemented in MATLAB (2016b) on a PC with 

16 GB RAM, Intel Core i7-3820 CPU (3.60 GHz). This integrates 

visible and infrared sequence, and thus we need the visible and 

infrared sequences with video registration and effective labels for 

testing and evaluating the performance of object tracking 

algorithms. We carried out extensive experiments using OTCBVS 

dataset [2], AIC datasets [3] and a sequence from our laboratory. 

The OTCBVS dataset includes 4 sequences, named Sequence 1 to 

4, and AIC dataset provides 1 sequence named Labman. These six 

sequences present different challenges, such as partial occlusion, 

scale variation, illumination change and so on. 

3.1.2 Compared trackers 
To evaluate the proposed tracking algorithm, we compare it with 

two groups of trackers that have different properties. The first 

group provides six state-of-the-art trackers, including IVT [4], 

MIL [5], TLD [6], CT [7], STRUCK [8] and ASLA [9]. The 

second group of tracking algorithms uses the visible and infrared 

features which are similar to the proposed algorithm, including 

FRDIF [10]and MVMKF [11]. It means that the first group is only 

based on visible features, and the second group uses multi-sensor 

features. There are still some tracking algorithms only via infrared 

sequences, but these trackers are complex and ineffective. 

Therefore, to build a set of compared algorithms, we ignore this 

group of trackers. 

3.1.3 Parameters Setting 
The empirical configuration is derived from a large number of 

experiments. In this case, we train a two-layer CNN where the 

size of the warped image, the receptive field, and filter number are 

empirically set to           and 100 respectively. 

Furthermore, we set learning rate   to 0.95, set the number of 

particles to 500, and set the covariances in the diagonal matrix to 

4, 4 and 0.01. 

3.1.4 Evaluation Criteria  
To ensure the robustness and accuracy of the proposed algorithm, 

three evaluation criteria: center location error, overlap ratio, and 

success rate, are exploited due to their high interpretability. Center 

location error [12] is calculated from the Euclidean distance 

between the center of the real result and the center of the tracking 

bounding box. 

                      √(     )
  (     )

  

where (     ) and (     ) indicate the real center and the center 

of the tracking bounding box separately.  

Moreover, overlap ratio [13] employs the overlap area between 
the real box and the tracking bounding box. Given the real area 

     and tracking candidate area     , the overlap ratio is 

computed by: 

              
    (         )

    (         )
 

Table 1. Comparisons of tracking methods on average location error, average overlap ratio and average success rate 

Sequences Ours IVT MIL CT TLD STRUCK ASLA FRDIF MVMKF 

Sequence 1 
3 

(82%,95%) 

18 

(39%,37%) 

4 

(75%,82%) 

17 

(43%,32%) 

25 

(34%,25%) 

33 

(48%,48%) 

86 

(11%,13%) 

50 

(10%,5%) 

7 

(73%,78%) 

Sequence 2 
4 

(90%,84%) 

97 

(21%,16%) 

34 

(11%,21%) 

23 

(31%,29%) 

38 

(23%,18%) 

9 

(65%,69%) 

26 

(17%,25%) 

45 

(9%,17%) 
4 

(85%,78%) 

Sequence 3 
2 

(86%,96%) 

6 

(81%,92%) 

30 

(40%,30%) 

26 

(17%,27%) 

36 

(55%,16%) 

157 

(14%,10%) 

22 

(79%,5%) 

134 

(13%,3%) 

4 

(80%,89%) 

Sequence 4 
11 

(74%,90%) 

73 

(23%,22%) 

38 

(43%,65%) 

52 

(37%,41%) 

87 

(36%,31%) 

20 

(68%,72%) 

91 

(24%,27%) 

105 

(11%,5%) 

14 

(67%,72%) 

Labman 
3 

(99%,97%) 

4 

(98%,92%) 

23 

(29%,93%) 

7 

(70%,91%) 

5 

(98%,91%) 

14 

(68%,91%) 

9 

(90%,96%) 

23 

(89%,92%) 

7 

(97%,90%) 

Intersection 
2 

(99%,92%) 

95 

(22%,47%) 

38 

(82%,55%) 

9 

(87%,61%) 

25 

(49%,58%) 

4 

(99%,90%) 

22 

(86%,65%) 

57 

(19%,15%) 

6 

(92%,92%) 



Average 

4.2 

88.3% 

92.3% 

48.8 

47.1% 

51.0% 

27.8 

46.7% 

57.7% 

22.3 

47.3% 

46.8% 

36.0 

49.1% 

39.8% 

39.5 

60.3% 

63.3% 

76.8 

39.5% 

38.5% 

69.0 

25.1% 

22.8% 

7.0 

82.3% 

83.2% 

Speed (fps) 7 6 17 149 18 17 2 1 5 

* Bold fonts indicate the best performance while the underline fonts indicate the second-best ones. Three numbers indicate on average 

location error, average overlap ratio and average success rate respectively. 

      

      

     (a) Frame #108            (b) Frame #476             (c) Frame #536           (d) Frame #281            (e) Frame #400            (f) Frame #586 

 

Figure 3. Sample tracking results of Sequence 1 (a,b,c) Sample tracking results of Sequence 2 (d,e,f). 

      

      

       (a) Frame #44               (b) Frame #65              (c) Frame #96              (d) Frame #145          (e) Frame #189            (f) Frame #351 

 

Figure 4. Sample tracking results of Sequence 3 (a,b,c) Sample tracking results of Sequence 4 (d,e,f). 

         

    (a) Frame #280             (b) Frame #300            (c) Frame #334             (d) Frame #152            (e) Frame #198         (f) Frame #220 

 

Figure 5. Sample tracking results of Labman (a,b,c) Sample tracking results of Intersection (d,e,f). 

If bounding box overlap ratio is large than the threshold (usually 

0.5), this frame is regarded as a successfully tracking frame. 

Hence, we design the success rate: 

             
        

 
 

where          is the number of the successfully tracking 
frames. 



3.2 Quantitative Comparison 
In qualitative comparisons, six challenging sequences are selected 

to evaluate the nine different tracking algorithms intuitively. 

Table 1 reports the average location error, average overlapping 

radio and success ratio. This table indicates the proposed tracking 

algorithm is the best one compared with other methods. Despite 

the lower speed, it is because this algorithm runs on CPU. In fact, 

compared with other tracking algorithms based on convolutional 

neural network, seven fps is an acceptable running time with no 

training process and a limited number of layers. 

3.3 Qualitative Comparison  

3.3.1 Partial Occlusion 
Sequence 1, Sequence 3 and Intersection meet the occlusion of the 

target, and at some frames, the target even disappears. In this case, 

the proposed algorithm provides a good performance compared 

with other algorithms, which has strong ability to distinguish 

background and target. CT, MIL, ASLA and other visible tracking 

algorithms miss the object more than once, mainly because visible 

features is not robust to generate appearance model with similar 

appearance occlusion. Note that FRDIF and MVMKF are tracking 

algorithms with visible and infrared features. FRDIF algorithm 

loses target in the initial frames, and MVMKF algorithm can track 

the object but cannot solve the occlusion problem incompletely.  

3.3.2 Illumination Changes 
The effect of illumination changes on the tracking algorithm is 

illustrated in Sequence 2. Most trackers including CT, IVT, etc., 

drift away because of continuous variation of target appearance 

under complex situations. In fact, it is difficult to directly find the 

object using naked eye at #400 frame, which demonstrates the 

superiority of the multi-sensor tracking algorithms. And thus, the 

proposed algorithm obtains the most appropriate tracking results. 

3.3.3 Cluttered Background 
We evaluated nine tracking algorithms with a significant cluttered 

background as shown in Sequence 3 and Sequence 4. When the 

target keeps moving, target meets a similar-appearance person in 

Sequence 3 and a black trash in Sequence 4. Due to the similar 

color, tracking algorithms start to drift from the target (e.g. MIL, 

TLD, CV) or track the wrong target (e.g. MVMKF, ALSA), while 

the proposed algorithm tracks the target successfully throughout 

the entire sequence. Therefore, it proves the importance of feature 

extraction based on the target and the related objects which makes 

the proposed algorithm obtain an excellent tracking result. 

3.3.4 Scale Variations 
Scale variations problem, as a common challenge, happens in 

each sequence. During the complex motion of object, the size of 

object at frame changes continually in Sequence 1, Sequence 2 

and Sequence 4. The proposed algorithm performs well, but CT 

and MVMKF algorithms cannot change the size of the tracking 

bounding box according to the target motion. which causes 

serious tracking problems. In severe cases, multiple objects or 

only part of target appear in the tracking box of CT and MVMKF 

algorithms. 

3.3.5 Abrupt Motion and Blur 
Labman contains the abrupt motion of target and the motion 

produces image blur. In the sequence, a man suddenly shook his 

head from left to right at #280 frame and #300 frame or suddenly 

turned around at #334 frame. Nearly all trackers can handle abrupt 

motion, but the proposed algorithm is the overall best tracker. 

4. CONCLUSION 
In this paper, we propose a novel algorithm for visual object 

tracking by exploring features of visible and infrared sequences. 

This method is carried out in three stages: preprocessing, image 

representation, and tracking. Preprocessing normalizes the image 

patches for convolutional neural network and integrates the 

multiple features, which is fully differentiable and significantly 

alleviate the lack of diversity via complementary information. 

Convolutional Neural Network with two layers is a simple but 

efficient and robust approach for visual appearance representation. 

Moreover, the Bayes State Inference is employed as a part of the 

online update. Finally, we provide the experimental results that 

there is a significant progress made compared with the state-of-

the-art methods on challenging scenarios. 
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