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Abstract

Constructing a visual appearance model is essential for visual tracking.
However, relying only on the visual model during appearance changes is
insufficient and may even interfere with achieving good results. Although
several visual tracking algorithms emphasize motional tracking that esti-
mates the motion state of the object center between consecutive frames, they
suffer from accumulated error during runtime. As neither visual nor motion-
al trackers are capable of performing well separately, several groups have
recently proposed simultaneous visual and motional tracking algorithms.
However, because tracking problems are often NP-hard, these algorithms
cannot provide good solutions for the reason that they are driven top-down
with low flexibility and often encounter drift problems. This paper proposes
a spiral visual and motional tracking (SVMT) algorithm which, unlike exist-
ing algorithms, builds a strong tracker by cyclically combining weak trackers
from both the visual and motional layers. In the spiral-like framework,
an iteration model is used to search for the optimum until convergence,
with the potential for achieving optimization. Three learned procedures
including visual classification, motional estimation, and risk analysis are
integrated into the generalized framework and implement corresponding
modifications with regard to their performances. The experimental result-
s demonstrate that SVMT performs well in terms of accuracy and robustness.
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1. Introduction

Visual tracking has received widespread attention for its extensive ap-
plications in computer vision such as intelligent video surveillance, human-
machine interfaces, robotics, and motion analysis [1, 2]. The construction of
a visual appearance model is essential for visual tracking. Depending on the
appearance model, existing tracking algorithms can be categorized into two
categories: generative [3, 4] and discriminative [5, 6]. Generative tracking al-
gorithms build a target model and then search for the candidate image patch
with maximal similarity; for example, the [;-tracker [3], which uses sparse
representation to model the target, and which was subsequently extended
by Li et al. [4] through an orthogonal matching pursuit algorithm. Zhang
et al. [7] proposed a generic formulation of the [;-tracker named multi-task
sparse learning method, in which tracking is formulated in a particle fil-
ter framework and the global and local structural appearance correlations
between particles is exploited in [8]. In [9], a structural sparse tracking al-
gorithm not only exploits the intrinsic relationship among target candidates
and their local patches to learn their sparse representations jointly, but also
preserves the spatial layout structure among the local patches inside each
target candidate. The part matching tracker [10] with the spatial-temporal
locality-constrained property achieves robust visual tracking by considering
both local (i.e., the low-rank and sparse structure information) and glob-
al (i.e., multi-mode template updating) matchings. A consistent low-rank
sparse tracker [11] was proposed in which the low-rank nature underlying
the image observation is exploited and the temporal consistency between the
representation of the selected candidate particles is taken into account. On
the contrary, discriminative algorithms cast tracking as a classification task
which separates the target foreground from the background. Babenko et al.
[5] introduced multiple instance learning (MIL) into online tracking where
samples are considered as positive and negative bags or sets. In the online
discriminative feature selection (ODFS) tracking method [6], the classifier
score is explicitly coupled with sample importance and its objective function
is optimized by feature selection. Besides these efforts, other researchers have
worked on tracking methods that are both generative and discriminative. For
instance, in the fast compressive tracking (FCT) algorithm [12], the object



is represented by features extracted in the compressive domain, and these
features are used to distinguish the foreground from the background. It is
a simple yet efficient algorithm that combines the merits of both generative
and discriminative algorithms. Motivated by FCT, Song et al. [13] took into
account both appearance and spatial layout information in the projections
and further proposed an online informative feature selection approach via
maximizing entropy energy, which can select the most informative features
from the pool. However, when the object changes its appearance (i.e., be-
cause of background clutter, illumination changes, occlusion, etc), depending
only on visual appearance is insufficient or may even interfere with achieving
good tracking.

Meanwhile, several previous works solved the problem of visual tracking
from the perspective of motional tracking [14], in which the object is rep-
resented as a point and its motion state is estimated between consecutive
frames. Motional trackers range from the Kalman filtering (KF) [15] tech-
nique to the Meanshift algorithm [16], particle filtering method [17], Markov
chain Monte Carlo schemes [18], and more. The Kalman filter, which has
been extensively used in dynamic systems, aims to estimate the optimal state
of the tracked target from a series of measurements in an efficient computa-
tional way. Several research efforts [19-22] have applied the Kalman filter to
visual tracking and have shown good improvement.

Visual and motional tracking are closely interrelated and there is no clear
boundary between them. By operating simultaneously, these two method-
s can benefit from one another. An adaptive tracking framework [23] was
presented to track non-rigid objects by fusing visual and motional feature
descriptors. Features are extracted from different points of view and are
used to update the object model for achieving tracking robustness. Cehovin
et al. [24] developed a coupled-layer model that combines the local visual
structure and the global motion of the target in a probabilistic model. Hua
et al. [14] combined occlusion and motion reasoning methods via a tracking-
by-detection approach which handles occlusion by integrating detection and
motion models. Kalal et al. [25] presented a visual tracking framework con-
sisting of tracking, learning, and detection (TLD) steps to achieve a long-term
tracking task. An adaptive compressive tracking method [26] was proposed
in which the most discriminative features are selected via an online vector
boosting method and an effective trajectory rectification approach is adopt-
ed which can make the estimated location more accurate. Yang et al. [27]
developed an online Fisher discrimination boosting feature selection mech-



anism which can enhance the discriminative capability between target and
background and utilized a weighted particle filtering framework for visual
tracking. In [28], the proposed convolutional networks based on the convolu-
tional neural network have a lightweight structure and exploit local structural
and inner geometric layout information from data without manual tweaking.
Tracking can be formulated as the task of risk minimization, which is NP-
hard, and may therefore cause numerical instability. However, the above
algorithms are not able to provide good solutions because they are driven
top-down which are limited by low flexibility and often encounter error accu-
mulation and drift problems. In this paper, we propose a cyclical framework
and use a risk modification model to address these problems.

A good tracker should be robust against challenges such as pose variation,
illumination change, occlusion, etc. Although a large number of visual track-
ers have been reported in the literature, they still do not have sufficient capa-
bilities to handle the above situations for the reason that the visual trackers
independently locate the object in every frame and thereby are sensitive to a
change in the visual appearance. To solve this problem, an effective method
to estimate the motion state of the object from consecutive frames needs to
be further explored. However, motional tracker follows the target frame to
frame, thus suffering from accumulated error during runtime. Neither visual
nor motional trackers can solve the tracking problem independently, but if
they operate simultaneously, there is potential to improve the performance
[25]. Motivated by it, this paper unifies visual and motional trackers into a
generalized framework in which the visual part describes the target’s visual
properties and locates it in each frame, the motional part provides training
data to update the visual results by the frame-to-frame information, and
then the visual part re-initializes the motional results to prevent its tracking
failure.

The main contributions of our work are summarized as follows:

1. In this paper, the spiral visual and motional tracking (SVMT) algo-
rithm is proposed by using a cyclical process to build a strong tracker from
initial weak trackers iteration by iteration. This iteration framework keeps
searching for the optimum until it reaches convergence, and thereby has the
potential to achieve optimization.

2. Because visual and motional trackers each have their individual advan-
tages, SVMT combines them into a generalized tracking framework to make
best use of strengths and avoid weaknesses.

3. The proposed risk function makes corresponding modifications with
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respect to the processing errors from visual and motional layers. Therefore,
three components including visual classification, motional estimation, and
risk analysis are integrated into each iteration step, and keep learning for
approaching optimization throughout the tracking process.

The remainder of this paper is organized as follows. In Section 2, we
describe the proposed SVMT algorithm in detail. The experimental results
are presented in Section 3. Section 4 concludes with a general discussion.

2. Problem Formulation

The proposed SVMT algorithm is described in detail in this section.

In this paper, the goal of tracking is to evaluate the risk function R(z) by
considering @ as the tracking result, and to find the optimal & that minimizes
R(x). However, this problem is NP-hard and may cause numerical unsta-
bility. Therefore, we propose a spiral visual and motional tracking (SVMT)
algorithm using an iteration process to solve this problem. In SVMT, each
iteration step repeats the same procedures, and keeps searching for the opti-
mum until convergence is reached. If we describe a single iteration step as a
circle, and a later iteration step as a smaller circle, SVMT can be represent-
ed as a spiral-like framework (see Fig. 1(a)) in which connected circles are
arranged in descending order of size, and the point (red dot in Fig. 1(a)) rep-
resents the final result. The kth iteration step in Fig. 1(a) (k =1,---, Nk,
where NNVj, denotes the total number of iteration steps) consists of three com-
ponents: visual classification, motional estimation, and risk analysis, which
are illustrated in Fig. 1(b). The visual and motional trackers are integrated
into a generalized framework, and the risk function implements corresponding
modifications with respect to the processing errors. The SVMT algorithm is,
in fact, a process designed to build a strong tracker from initial weak trackers
iteration by iteration. We discuss the detailed procedure of each of the three
components in the following sections.

2.1. Visual classification

At each frame, each of the extracted test samples [12] is convolved with
a set of Haar-like feature filters at multiple scales [5]. Then, each of them
is vectorized into a very high-dimensional image feature h € R™ that can be
embedded into an extremely compressive feature vector v € R™ (m < n).
This linear transformation is expressed as

v = Oh, (1)
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Figure 1: General framework of SVMT: (a) spiral-like representation of SVMT and (b)
the three components in the kth iteration step: 1. visual classification: select some samples
(centers of which are marked with green dots) around the (k — 1)th iteration result (red
box), and obtain the visual result (green box) through visual classification; 2. motional
estimation: compute the motional result (yellow box) based on the (k — 1)th iteration
result (red box) and the visual result (green box) via motional estimation; 3. risk analysis:
make risk decision with the (k — 1)th iteration result (red box), the visual result (green
box), and the motional result (yellow box), and output the kth iteration result.

where the random projection matrix @ € R™*" is data-independent of any
training samples, and has to satisfy the Johnson-Lindenstrauss lemma [29]
to restructure h from v with minimum error. In this paper, @ is computed
according to [30].

The task of visual classification is completed by using a naive Bayesian
classifier [31]. We represent the compressive vector of the ith test sample
as v(1) = {v1(2), -+ ,um(?)}. Then, each element v;(i)(j = 1,---,m) in
v(i) is assumed to be independently distributed and modeled with the naive
Bayesian classifier [12]. Thus, the classifier score of v (i) in the kth iteration



step is computed as

where p(y® = 1) = p(y® = 0), and y® € {0,1} denotes a bina-
ry variable representing the positive and negative label of the sample.
The conditional distributions in Eq. (2) are assumed to be Gaussian

distributed p[o” (i) [y® =1] ~ N(u"™,0;™) and p[oi” (i) [y*™ = 0] ~
N(,u?(k),ag(k)). The positive Gaussian parameters (HJ( ), ]1('“)) are in-

crementally updated as M;(k) +— )\,ul(k + (1 — ANp'® and 0; R

\/)\(U;(k))2 + (1= X)(ot®)2 + \(1 — /\)(,uj( ) 1®)2 where A > 0 is a
1(k)

learning parameter, and p'® and o'®) are the mean and covariance Gaussian
parameters computed from the historical frames [12]. The negative Gaussian
parameters (,u]( ), J(k)) are updated in the same way. Then, we find the

sample with the maximal classifier score by

S®) (3,,) = argmax S (7). (3)
The state of the i,,th sample with the maximal classifier score S®*)(i,,) is

saved as the visual result azq(fj)

In comparison with S®*) (i) which scores the possibility to be the target,
the error of the ith sample is defined to score its possibility to be the back-

ground
[0 = o]

p[ (i) |y ® ] . W

is defined to compute the normalized error

error® Z log

Then, the visual error rate qulf)

rate of the i,,th sample as

w  error®™(i,,) — argmin, error® ()
vi o

()

argmax; error® (i) — argmin, error® (i)’



2.2. Motional estimation

The Kalman filter is known as an iteration method for state estimation
and optimization problems. The optimal estimation of the current value of
the parameter can be obtained from the previous estimation and the latest
measurement value. In this paper, the prediction form of the Kalman filter
is used to estimate the motion state:

mo

(6)

where mﬁ,’f), and z® represent the estimated and measured values of the

motion state in the kth iteration step, respectively, and F' and H denote the
state and measurement transition matrices, respectively. The system noise
w and measurement noise u are mutually independent zero-mean Gaussian
noise sequence distributions with covariance @ and R, respectively [32].

In the prediction stage, the state and the error covariance are predicted

{@(Mkl) — F@(k(:l)

as

mo m

P(k‘|k‘—1) _ FP(k—l)FT + Q(k) )

and after the measurement is attained, the Kalman filter is updated as

(7)

K(k) — P(k\k—l)HT(HP(Mk—I)HT + R)—l
p) — (I — K(k)H)p(klk—l) 7 (8)
:i:ﬁ,’;?) — ﬁ:ﬁ[j,'f‘” + K(k)(z(k) _ Hﬁ:(k‘k_l))

mo

where K is known as the Kalman gain, P is the covariance matrix of the
state estimation error, and I denotes the identity matrix. The goal of the
filter is to minimize the error between the true and estimated state vectors
[33]. In this paper, the measurement state z*) is defined as
(k) ¢ (k)
L) { T it S >0

(k=1)

vl

(9)

else

The motional error rate is defined by evaluating the performance of the

Kalman filter as
T
R P e®) 4z |

mo
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which represents the normalized error rate when choosing the estimated state
vector a:(k) as the motional result but z'%) is true.

2.3. Risk analysis
After obtaining the visual and motional error rates E ) and E,,’f,ﬁ, the risk

function is defined as

R®) — w® pk) + wk) p) (11)

vt vl mo~—1mo’

where w(k) and w¥) are the visual and motional weights, respectively. In

our tracker, it is imperative to adapt appropriate weight OFtlons for flexible

circumstances. Thus, the determination of risk weights (w,; ,wmo
wq(j:) =0, wf?’;), = if Lg:») < Ty,
w(k) =1,wk) =0 else if L™ < T,
" (k) (k) ’ (12)
w® = Lo o9 Lmo else
YL+ L " LG+ L
where the visual and motional likelihood functions are defined as
L(k) e 6_)\0(/‘7111))2
vVl (13>

L) — o=Dolpih)?

In Eq. (13), A, denotes a control parameter [24], and pg? and p'%) are the

Euclidean distances [34] between the template and mgf) or i), respective-
ly. Considering short-time tracking without great appearance changes, the
template is set as the feature in the previous frame [2]. The threshold is
computed as T,, = Awe’\o(pgk>)2, where A\, is a control parameter, and p((,k)
represents the mean value of the Euclidean distances between the negative
samples and the template.

The main steps of the proposed SVMT algorithm are summarized in

Algorithm 1.

3. Experiments

In this section, the SVMT algorithm is tested on several challenging real-
world sequences, and some qualitative and quantitative analyses are per-
formed on the tracking results.



Algorithm 1 Spiral visual and motional tracking
Input: the tth frame

for £k =1 to N; do
1 Visual classification:

1.1 Select test samples by X7 = {&®)|||z*) — :cg,]i;l)ﬂ <~}

1.2 Obtain the compressive feature vector v using Eq. (1), and then apply the naive
Bayes classifier to get the classifier score S*)(i) by Eq. (2).

1.3 Find the 4,,th sample with maximal classifier score S*)(i,,) using Eq. (3) and save
(k)

v @s visual result.

its state =
1.4 Compute the visual error rate Ef]]:) by Eq. (5).

2 Motional estimation:
2.1 Use Kalman filter to obtain the motional result :1:552)
2.2 Compute the motional error rate EF) by Eq. (10).

3 Risk analysis:
3.1 Compute the risk weights (wl()}f), wﬁ,’fg) by Eq. (8).
3.2 Obtain the risk function R using Eq. (11).
3.3 If the reduction in R™*) is smaller than a threshold, break.

4 Updating:

4.1 Extract positive and negative samples via X = {z®||z® — z{)|| < o} and
X8 = {a®|s < 2™ —zin|| < 6.

4.2 Extract the sample features and update the classifier parameters.
end for

Output: tracking result ;cﬁ,’f%

3.1. FExperimental setup and evaluation criteria

The sample parameters were set as o = 4, § = 30, ¢ = 8 and v = 20 [30],
and the control parameters A, and A\, were set as 1.8 and 1.2, respectively.
The state and measurement transition matrices of the Kalman filter were set
as [35]

1010
0101 1000

F:oo10’H:{o1oo}’
0001

and the covariance of the system and measurement noise were set as () = 0.1
and R = 1.0 [33]. SVMT was implemented using Visual Studio 2010 on an
Intel Dual-Core 1.70GHz CPU with 4 GB RAM.
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Two metrics, i.e., location error (pixel) [36] and overlapping rate (%)
6], are used to evaluate the tracking results quantitatively. The location

error is computed as error = \/(q:G —27)> + (yo — yr)?, where (zg,yg)
and (zr,yr) are the ground truth (either downloaded from a standard
database or located manually) and tracking bounding box centers, re-
spectively. The tracking overlapping rate is defined as overlapping =
area(ROIg(ROIr)/area(ROIz|J ROIr), where ROIg and ROIr denote
the ground truth and tracking bounding box, respectively, and area(-) is the
rectangular area function. A smaller location error and a larger overlapping
rate indicate higher accuracy and robustness.

3.2. Ezxperimental results

The performance of SVMT is compared with state-of-the-art visual track-
ers FCT [12], MIL [5], and ODFS [6], the motional tracker KF [15], and the
simultaneous visual and motional tracker TLD [25]. Figs. 2 to 8 and Ta-
bles 1 to 2 present the experimental results in twelve challenging sequences
named Basketball, Bear, Bike, Car, Deer, Doll, Faceocc, Fox, MHuang, Shak-
ing, Skater, and Sylv, where Bear and For were collected from the Animal
World TV show by ourselves, and the others are publicly available [37]. Next,
the performance of each sequence is described in detail.

3.2.1. Low resolution and partial occlusion

Sequences Bear and Fox are low-resolution recordings and present a
greater challenge in terms of occlusion. In Sequence Bear (131 frames in
total), the target polar bear is surrounded and occluded by snow drifts with
an appearance similar to that of the target. These background disturbances
together with occlusion cause the ODFS, KF, and TLD trackers to drift s-
lightly from the target, as shown in Fig. 2. As seen in Figs. 6 and 7, SVMT
performs the best in terms of location error and overlapping rate due to the
effectiveness and robustness of combining the features of the visual and mo-
tional layers. For convenience of presentation, the ODF'S tracking curve is
not shown entirely in Fig. 6.

In the first part of Sequence Fox (277 frames in total), all six trackers
perform well. However, when the target fox walks behind the bushes at
around Frame #150, and is occluded by the video subtitle at around Frame
#193, ODFS and KF lose track of the target (see Fig. 2). Figs. 6 and 7 also
indicate these failures when occlusion occurs. SVMT is able to overcome the
partial occlusion and delivers the best performance for this video.

11



The target in Sequence Doll (3870 frames in total) undergoes background
clutter and partial occlusion by hands (Frames #2557 and #2637). As can be
seen from Fig. 2, only ODFS, KF, and the proposed SVMT algorithms can
overcome these problems and achieve good tracking results, whereas SVMT
performs the best.

Bear

FCT

MIL

ODFS KF TLD

SVMT

Figure 2: Tracking performances of the test sequences with low resolution and partial
occlusion.

3.2.2. Illumination change

The efficiency of SVMT is demonstrated by using Sequence Car (351
frames in total) in which a large change in illumination is displayed. This
sequence is blurry because it was captured at night and the color of the light
is similar to that of the target. As shown in Fig. 3, all the trackers lose the
track of the target, except for SVMT which is able to overcome the large
illumination change and performs well on this sequence. The location errors
and overlapping rates of the other five trackers increased and decreased frame
by frame, respectively (see Figs. 6 and 7).
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In Sequence MHuang (1071 frames in total), not only the illumination
of the background (Frames #758 and #1071) but also the facial expression
of the target man (Frames #513 and #985) keeps changing throughout the
tracking process. Most of the twelve trackers achieve the tracking task suc-
cessfully, but the proposed SVMT algorithm performs the best.

Sequence Shaking (364 frames in total) contains examples of illumination
change (Frame #59), pose variation (Frames #127 and #249), and occlusion
(Frame #164). When the target undergoes illumination changes at around
Frame #59, MIL, KF, and TLD drift toward the background, as shown in
Fig. 3. Then, MIL and KF identify a false target because the true target is
occluded by the guitar (see Frame #164 in Fig. 3). Besides, the true target
keeps on shaking his head during the whole tracking process such that FCT
and ODFS are unable to track it accurately (see Frames #127 and #249 in
Fig. 3). Once again, SVMT outperforms most of the other methods in most
metrics (location accuracy and success rate).

Shaking
=

MIL

Figure 3: Tracking performances of the test sequences with illumination change.
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3.2.3. Pose variation and background clutter

The target mountain bike in Sequence Bike (227 frames in total) un-
dergoes background clutter (Frames #45 and #103), pose rotation (Frame
#65), and abrupt movement (Frame #210). As can be seen from Fig. 4,
MIL and KF lose the target during most of the tracking process. While
the target is passing by the mountain at around Frame #103, a background
with a similar pattern distracts FCT from the target. In contrast, TLD and
SVMT achieve favorable performances in terms of both tracking error and
success rate (see Figs. 6 and 7) due to the combined learning of visual and
motional information, whereas SVMT performs better with the spiral visual
and motional model.

Sequence Skater (159 frames in total), in which target is a figure skater,
demonstrates the efficiency of SVMT on coping with large-scale pose varia-
tion. Sequence Sylv (1273 frames in total) also undergoes pose variation and
background clutter frequently and heavily. As can be seen from Fig. 4, other
five trackers cannot provide accurate tracking results, whereas our tracker
shows satisfying performance in terms of both accuracy and robustness.

Bike
‘.)

Skater

> g5 NAGANOI1998 @R | 11998 (o—3'ACANO 1998 G © W @

AN A

#83 #106 #120 #158

MIL

ODFS KF TLD

SVMT

Figure 4: Tracking performances of the test sequences with pose variation and background
clutter.
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3.2.4. Large-scale occlusion and abrupt movement

Sequence Basketball (203 frames in total) shows the performances of these
trackers when the target is non-rigid and undergoes heavy occlusion and
abrupt movement. As shown in Fig. 5, when the target player is fully
occluded by another player at around Frame #20, FCT loses the target, and
MIL as well as TLD drifts away from the target. At around Frame #53,
TLD mistakes another player for the target when the true target reappears
in the camera view. Only KF, ODFS, and SVMT are able to handle these
problems, whereas the result of SVMT is the most accurate, as shown in
Figs. 6 and 7.

The experiment in Sequence Deer (70 frames in total) aims at evaluating
the performances on tracking the head of the deer. As can be seen from
Fig. 5, this sequence is a low-resolution and low-frame-rate recording, and
the target is fully occluded by another deer. Only our tracker keeps a high
accuracy for most of the time in the whole tracking process.

Sequence Faceocc (884 frames in total) is an occlusion sequence in which
the woman’s face is occluded by a book in some different directions. Fig. 5
shows the performances of the six tracking algorithms. When the occlusion
occurs, some trackers mistake the book for the target (i.e., FCT and TLD),
some drift away from the target (i.e., ODFS), and some present low-accurate
locating (i.e., MIL and KF). Only the proposed SVMT algorithm performs
a robust tracking.

Tables 1 and 2 are included here to demonstrate the performance of the
twelve test sequences on average location error (pixel) and success rate (%).
The success rate is defined as the number of times success is achieved in the
whole tracking process by considering one frame as a success if the overlap-
ping rate exceeds 0.5 [6]. A smaller average location error and a larger success
rate indicate increased accuracy and robustness. In Sequence Car, most of
the trackers do not achieve a large success rate (see Table 2) because the
target sizes are relatively small such that a slight drift away from the target
may cause a great reduction in the success rates. Tables 1 and 2 show that
SVMT outperforms both state-of-the-art separate and simultaneous visual
and motional trackers.

The proposed SVMT tracking algorithm is a combination between visu-
al and motional trackers. In this experiment, the importance of these two
components to improve the tracking performance is evaluated in Fig. 8. Al-
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Basketball

ODFS KF TLD

SVMT

Figure 5: Tracking performances of the test sequences with large-scale occlusion and
abrupt movement.

Table 1: Comparisons on average location error (pixel) of the test sequences. Bold fonts
indicate the best performance.

Sequences SVMT FCT MIL ODFS KF TLD
Basketball 15 106 17 23 23 148
Bear 6 8 6 108 41 47
Bike 6 156 218 126 219 13
Car 7 51 58 105 77 30
Deer 9 120 220 91 252 13
Doll 5 72 24 13 19 5
Faceocc 18 32 24 18 16 34
Fox 3 9 11 48 101 14
MHuang 5 47 13 30 14 36
Shaking 7 15 155 18 153 36
Skater 11 17 15 14 21 26
Sylv 7 13 11 14 9 27

though visual part of the proposed SVMT algorithm is essential for tracking,
when the visual feature is unreliable, the motional part needs to be more
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Figure 6: Comparisons on location error (pixel) of the test sequences.

important than the visual one to keep a good tracking. As can be seen from
Fig. 8, visual and motional weights compete with each other frequently and
fiercely for almost all these test sequences. For example, when the target
deer in Sequence Deer is occluded by another deer with a similar appear-
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Basketball Bear Bike

Figure 7: Comparisons on overlapping rate of the test sequences.

ance, relying only on visual feature may cause tracking failure. Therefore,
our tracker decreases the visual weight and meanwhile increases the motional
one so as to achieve a favorable tracking performance.
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Table 2: Comparisons on success rate (%) of the test sequences. Bold fonts indicate the
best performance.

Sequences SVMT FCT MIL ODEFS KF TLD
Basketball 100 0 33 76 57 9
Bear 100 100 100 12 17 1
Bike 100 38 12 48 16 86
Car 41 3 1 0 0 12
Deer 80 30 6 31 4 70
Doll 100 29 76 92 81 67
Faceocc 75 53 74 40 53 22
Foz 98 77 60 31 20 68
MHuang 100 67 74 81 62 46
Shaking 94 59 4 40 1 45
Skater 98 84 74 69 66 67
Sylv 100 83 78 75 94 82

4. Conclusion

Visual tracking can be completed through both visual and motional pro-
cesses. Visual and motional tracking are closely interrelated and there is
no clear boundary between them. However, conventional solutions ignore
this inter-dependence completely or partially, which has a negative impact
on the performance. Unlike existing approaches, this paper proposes an ap-
proach in which the spiral vision and motional tracking (SVMT) algorithm
unifies visual and motional trackers into a generalized framework, and uses
an iteration model to achieve optimization. In SVMT, each iteration step is
decomposed into visual classification, motional estimation, and risk analysis
steps in which the latter step represents the error of each iteration step and
makes corresponding modification to approach optimization. SVMT is, in
fact, a process designed to build a strong tracker from initially weak trackers
iteration by iteration. Numerous real-world video sequences were used to test
SVMT and other state-of-the-art algorithms, and here we only selected rep-
resentative videos for presentation. Thus, experimental results demonstrated
that SVMT is highly accurate and robust.
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